Exam Advanced Logic

June 14th, 2016

Instructions:

- Put your student number on the first page and subsequent pages (not your name, in order to allow for anonymous grading).
- Do not use pencil (or an erasable pen) or a red pen to make your exam.
- Motivate all your answers.
- Your exam grade is computed as $\min (10$, (the sum of all your points +10$)$ divided by 10$)$. For example, someone who would only fill in a student number would get a 1, while someone who would make questions 1-9 perfectly but would skip the bonus question would get $\min (10$, $(90+10) / 10)=10$.
- If you want to inspect your exam after it has been graded, you can do so by making an appointment with Rineke Verbrugge.
- Please fill in the anonymous course evaluation.

Good luck!

1. Induction ($\mathbf{1 0} \mathbf{p t}$) Consider the sublanguage $\mathscr{L}_{\leftrightarrow}$ of the language of propositional logic with \leftrightarrow as its only logical operator. (So without \neg, \wedge, \vee and \rightarrow).
(a) Give an inductive definition of the well-formed formulas of $\mathscr{L}_{\leftrightarrow}$.
(b) Prove by induction that each well-formed formula of $\mathscr{L}_{\leftrightarrow}$ is satisfiable.
(Reminder: A well-formed formula A is satisfiable if and only if there exists a valuation $v: P \rightarrow\{0,1\}$ such that $v(A)=1$.)
2. Three-valued logics ($\mathbf{1 0} \mathbf{~ p t}$) Using a truth table, determine whether the following inference holds in \mathbf{K}_{3} :

$$
(p \wedge q) \wedge \neg p \models_{K_{3}}(p \vee q) \supset \neg p
$$

Do not forget to draw a conclusion.
3. Tableaus for FDE and related many-valued logics (10 pt) By constructing a suitable tableau, determine whether the following inference is valid in $\mathrm{E}_{\mathbf{3}}$. If the inference is invalid, provide a counter-model.

$$
(p \supset q) \wedge(r \supset s) \vdash_{\biguplus_{3}}(p \supset s) \vee(r \supset q)
$$

NB: Do not forget to draw a conclusion from the tableau.
4. Fuzzy logic ($\mathbf{1 0} \mathbf{~ p t}$) Determine whether the following holds in the fuzzy logic with $D=$ $\{x: x \geq 0.7\}$. If so, explain why. If not, provide a counter-model and explain why not.

$$
\models_{0.7}((p \rightarrow q) \rightarrow q) \rightarrow q
$$

5. Basic modal tableau (10 pt) By constructing a suitable tableau, determine whether the following is valid in K. If the inference is invalid, provide a counter-model.

$$
\diamond(p \wedge \diamond(q \wedge \diamond p)) \vee(p \wedge \diamond(q \wedge \diamond \diamond p)) \vdash \diamond \diamond \diamond p
$$

NB: Do not forget to draw a conclusion from the tableau.
6. Normal modal tableau (10 pt) By constructing a suitable tableau, determine whether the following tense-logical inference is valid in $K_{\eta \tau}^{t}$. If the inference is invalid, provide a counter-model.

$$
[F]([F] p \supset p) \vdash_{K_{n \tau}^{t}}[F] p
$$

NB: Do not forget to draw a conclusion from the tableau.
7. Soundness and completeness (10pt) Let be a complete open branch of a $K_{\tau \sigma}$-tableau, and let $I=\langle W, R, v\rangle$ be the interpretation that is induced by b. Show that the accessibility relation R of I is transitive and symmetric.
8. First-order modal tableau, variable domain (10 pt) By constructing a suitable tableau, determine whether the following is valid in $V K$. If the inference is invalid, provide a countermodel.

$$
\forall x Q x \supset \forall x \square P x \vdash_{V K} \forall x Q x \supset \square \forall x P x
$$

NB: Do not forget to draw a conclusion from the tableau.
9. Default logic ($\mathbf{1 0} \mathbf{~ p t}$) The following translation key is given:
$P(x) \quad x$ is a fan of Graham Priest
$B(x) \quad x$ is a fan of Ruth Barcan-Marcus
$K(x) \quad x$ is a fan of Saul Kripke
$C(x) \quad x$ is in favor of constant domains
$a \quad$ Aravik
Consider the following set of default rules:

$$
D=\left\{\delta_{1}=\frac{P(x) \wedge B(x): \neg C(x)}{\neg C(x)}, \quad \delta_{2}=\frac{\neg K(x): C(x)}{C(x)}, \quad \delta_{3}=\frac{P(x): B(x)}{B(x)}\right\}
$$

and initial set of facts:

$$
W=\{P(a), \forall x(\neg B(x) \vee \neg K(x))\} .
$$

This exercise is about the default theory $T=(W, D)$; so you only need to apply the defaults to the relevant constant a.
(a) Of each of the following sequences, state whether it is a process; and if so, whether or not the process is closed, and whether or not it is successful. Briefly explain your answers.
i. the empty sequence ()
ii. $\left(\delta_{2}\right)$
iii. $\left(\delta_{3}, \delta_{2}\right)$
iv. $\left(\delta_{3}, \delta_{2}, \delta_{1}\right)$
(b) Draw the process tree of the default theory (W, D).
(c) What are the extensions of (W, D) ?

Bonus; 10 pt Consider the language of FDE, containing the connectives \neg, \vee, \wedge (and not containing \supset). Does the following statement hold for all wffs A, B in that language?
"If $A \vdash_{K_{3}} B$ and $A \vdash_{L P} B$, then $A \vdash_{F D E} B$ "

If yes, please explain exactly why the statement holds for all wffs A, B in the language of FDE. If no, please provide a pair of wffs A, B and show in detail why that pair forms a counterexample to the statement.

