EXAM ADVANCED LOGIC

June 14th, 2016

Instructions:

- Put your student number on the first page and subsequent pages (not your name, in order to allow for anonymous grading).
- Do not use pencil (or an erasable pen) or a red pen to make your exam.
- Motivate all your answers.
- Your exam grade is computed as min(10, (the sum of all your points + 10) divided by 10). For example, someone who would only fill in a student number would get a 1, while someone who would make questions 1-9 perfectly but would skip the bonus question would get min(10, (90+10)/10) = 10.
- If you want to inspect your exam after it has been graded, you can do so by making an appointment with Rineke Verbrugge.
- Please fill in the anonymous course evaluation.

Good luck!

- 1. Induction (10 pt) Consider the sublanguage $\mathscr{L}_{\leftrightarrow}$ of the language of propositional logic with \leftrightarrow as its only logical operator. (So without \neg , \land , \lor and \rightarrow).
 - (a) Give an inductive definition of the well-formed formulas of $\mathscr{L}_{\leftrightarrow}$.
 - (b) Prove by induction that each well-formed formula of $\mathscr{L}_{\leftrightarrow}$ is satisfiable. (Reminder: A well-formed formula A is satisfiable if and only if there exists a valuation $v: P \to \{0, 1\}$ such that v(A) = 1.)
- 2. Three-valued logics (10 pt) Using a truth table, determine whether the following inference holds in K₃:

$$(p \land q) \land \neg p \models_{K_3} (p \lor q) \supset \neg p$$

Do not forget to draw a conclusion.

3. Tableaus for FDE and related many-valued logics (10 pt) By constructing a suitable tableau, determine whether the following inference is valid in L₃. If the inference is invalid, provide a counter-model.

$$(p\supset q)\wedge (r\supset s)\vdash_{{\rm L}_3} (p\supset s)\vee (r\supset q)$$

NB: Do not forget to draw a conclusion from the tableau.

4. Fuzzy logic (10 pt) Determine whether the following holds in the fuzzy logic with $D = \{x : x \ge 0.7\}$. If so, explain why. If not, provide a counter-model and explain why not.

$$\models_{0.7} ((p \to q) \to q) \to q$$

5. Basic modal tableau (10 pt) By constructing a suitable tableau, determine whether the following is valid in K. If the inference is invalid, provide a counter-model.

$$\Diamond (p \land \Diamond (q \land \Diamond p)) \lor (p \land \Diamond (q \land \Diamond \Diamond p)) \vdash \Diamond \Diamond \Diamond p$$

NB: Do not forget to draw a conclusion from the tableau.

6. Normal modal tableau (10 pt) By constructing a suitable tableau, determine whether the following tense-logical inference is valid in $K_{\eta\tau}^t$. If the inference is invalid, provide a counter-model.

$$[F]([F]p \supset p) \vdash_{K_{n\tau}^t} [F]p$$

NB: Do not forget to draw a conclusion from the tableau.

- 7. Soundness and completeness (10pt) Let b be a complete open branch of a $K_{\tau\sigma}$ -tableau, and let $I = \langle W, R, v \rangle$ be the interpretation that is *induced* by b. Show that the accessibility relation R of I is transitive and symmetric.
- 8. First-order modal tableau, variable domain (10 pt) By constructing a suitable tableau, determine whether the following is valid in VK. If the inference is invalid, provide a countermodel.

$$\forall xQx \supset \forall x \Box Px \vdash_{VK} \forall xQx \supset \Box \forall xPx$$

NB: Do not forget to draw a conclusion from the tableau.

- 9. Default logic (10 pt) The following translation key is given:
 - P(x) x is a fan of Graham Priest
 - B(x) x is a fan of Ruth Barcan-Marcus
 - K(x) x is a fan of Saul Kripke
 - C(x) x is in favor of constant domains
 - a Aravik

Consider the following set of default rules:

$$D = \left\{ \delta_1 = \frac{P(x) \wedge B(x) : \neg C(x)}{\neg C(x)}, \qquad \delta_2 = \frac{\neg K(x) : C(x)}{C(x)}, \qquad \delta_3 = \frac{P(x) : B(x)}{B(x)} \right\},$$

and initial set of facts:

$$W = \{ P(a), \forall x (\neg B(x) \lor \neg K(x)) \}.$$

This exercise is about the default theory T = (W, D); so you only need to apply the defaults to the relevant constant a.

- (a) Of each of the following sequences, state whether it is a *process*; and if so, whether or not the process is *closed*, and whether or not it is *successful*. Briefly explain your answers.
 - i. the empty sequence ()
 - ii. (δ_2)
 - iii. (δ_3, δ_2)
 - iv. $(\delta_3, \delta_2, \delta_1)$
- (b) Draw the process tree of the default theory (W, D).
- (c) What are the extensions of (W, D)?

Bonus; 10 pt Consider the language of FDE, containing the connectives \neg, \lor, \land (and not containing \supset). Does the following statement hold for all wffs A, B in that language?

"If $A \vdash_{K_3} B$ and $A \vdash_{LP} B$, then $A \vdash_{FDE} B$ "

If yes, please explain exactly why the statement holds for all wffs A, B in the language of FDE. If no, please provide a pair of wffs A, B and show in detail why that pair forms a counterexample to the statement.